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A Finite Difference Technique for Singularly
Perturbed Two-Point Boundary value Problem
using Deviating Argument

K. Phaneendra’, K. Madhulatha®, Y.N. Reddy®

Abstract— In this paper, we have presented a finite difference technique to solve singularly perturbed two-point boundary value problem
using deviating argument. We have replaced the given second order boundary value problem by an asymptotically equivalent first order
differential equation with deviating argument. We have applied a fourth order finite difference approximation for the first derivative and
obtained a tridiagonal system. Then, we have solved this tridiagonal system efficiently by discrete invariant imbedding algorithm. This

method is iterative on the deviating argument.
method.

We have presented numerical results of several model examples to support the proposed

Index Terms — Singularly perturbed two-point boundary value problem, Boundary layer, Deviating argument, Finite difference, Taylor

series, Tridiagonal system.

1 INTRODUCTION

Singularly perturbed boundary value problems arise frequent-
ly in many areas of science and engineering such as heat trans-
fer problem with large Peclet numbers, Navier-Stokes flows
with large Reynolds numbers, chemical reactor theory, aero-
dynamics, reaction- diffusion process, quantum mechanics,
optimal control etc. due to the variation in the width of the
layer with respect to the small perturbation parameter . Sev-
eral difficulties are experienced in solving the singular pertur-
bation problems using standard numerical methods with uni-
form mesh. Equations of this type typically exhibit solutions
with layers; that is, the domain of the differential equation
contains narrow regions where the solution derivatives are
extremely large.

These types of problems are discussed asymptotically by
Bellman [1], Bender and Orszag [2], Kevorkian and Cole [5],
Nayfeh [7], O’'Malley [8] and numerically by Van Veldhuizen
[10], Miller [6], Kadalbajoo and Reddy [4], Soujanya et. al. [9].
It is well-known that replacing the first derivative by central
difference is not suitable, i.e., no resemblance at all exists be-
tween the solution of the differential equation and the solution
of the difference equation. This difficulty can be removed by
approximating the first derivative by fourth order difference.

Hence, in this paper, we have presented a finite difference
technique to solve singularly perturbed two-point boundary
value problem using deviating argument. We have replaced
the given second order boundary value problem by an asymp-
totically equivalent first order differential equation with devi-
ating argument. We have applied a fourth order finite differ-
ence approximation for the first derivative and obtained a
tridiagonal system. Then, we have solved this tridiagonal sys-
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tem efficiently by discrete invariant imbedding algorithm.
This method is iterative on the deviating argument. We have
presented numerical results of several model examples to
support the proposed method.

2 DESCRIPTION OF THE METHOD

2.1 Left —end Boundary Layer

Consider a linear singularly perturbed two-point boundary
value problem of the form:

&"()+a()y'()+b(x)y(x) = f(x), xe[0,1] ©)
with boundary conditions y (0) = aandy (1) = 2
where ¢ is a small positive parameter (0 < & << 1) and a, 8
are known constants.

We assume that a(x), b(x) and f(x) are sufficiently continuously
differentiable functions in [0, 1]. Furthermore, we assume that
b(x) <0, a(x) > M > 0 throughout the interval [0, 1], where M is
some positive constant. Under these assumptions, (1) - (2)
has a unique solution y(x) which in general, displays a bound-
ary layer of width O( ¢) at x = 0 for small values of ¢.

First, we replace the original second order differential equa-
tion (1) by an asymptotically equivalent first order differential
equation with a small deviating argument, and then solving it
efficiently by employing finite differences.

Let y be a small positive deviating argument 0 < y <<1. By
using Taylor series expansion in the neighbourhood of the
point x, we have

2
y(x—7)=y)-'(x) +77y"(x)

V(0 = 2y(x—y)—2y2(x)+2w'<x) o)
4

and consequently, equation (1) is replaced by the following first
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order differential equation with a small deviating argument:

y'()=py(x=7)+q(y(x)+r(x), for y <x<1 (4)
where
_ 2
P =25 g =22 P
2ye +ya(x) 2ye +y“a(x)
2
g =%
2y +y“a(x)

The transition from equation (1) to equation (4) is admitted,
because of the condition that y is small. This replacement is
significant from the computational point of view. Further de-
tails on the validity of this transition can be found in El'sgol’ts
and Norkin [3].

We now describe a new finite difference method to solve
equation (4). We divide the interval [0, 1] into N equal subin-
tervals of mesh size h=1/N so that Xx; =ih, i=0, 1, 2,..., N.
The equation (4) at X=X fori=1, 2, ...., N-1 becomes

Y'(%i) = p(Xi )y —») +a(%;) y(x;) +r(x;) ®)

Taking fourth order finite difference approximation
I~ yi+1 B yi—l +O(h4)

Yi = >
2h{1+ 5}
6

in the above equation, where 52 Yi = Yia —2Yi + Vi1
we get
Yis1 ~Yi1

2
2h[1+5J
6

. 2
ﬁﬂ—ﬁi=@+%J@WOWM—&+mewﬂ+ﬂmﬂ

= p(%)y(Xi —9) +a(x;) y(x;) +r(x;)

2h

After simple manipulation, we get three term recurrence rela-
tion

Eiyifl_Fiyi+Giyi+1:Hiifori=1*2*""N'l (6)
where
-1 Pig y) 4 i1
Ei=—-——=|14+% |——w; ——
'"2h 6 [ h) en’ 6
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to solve for the unknowns vy;’s by using an efficient algorithm
called discrete invariant imbedding.

2.2 Right —End Boundary Layer

Now assume that b(x) < 0, a(x) £ M < 0 throughout the interval
[0, 1], where M is some negative constant. Under these as-
sumptions, (1) - (2) has a unique solution y(x) which in gen-
eral, displays a boundary layer of width O(¢) at x = 1 for small
values of &

Let  be a small positive deviating argument, 0 < y <<1. By
using Taylor series expansion in the neighbourhood of the
point x, we have

y?
y(x+7)=yO) + () + ERA%

" 2y(x+y)-2y(x)—2p'(x

y() = 2Y0x7) Y09 -2’9 0
4

and consequently, equation (1) is replaced by the following

first order differential equation with a small deviation argu-

ment:
y' () =px)y(x+7)+a()y(x)+r(x), for 0 <x<1-p  (8)
where

-2 2¢ -y °b(x
o(X) = ()= 4 2( )
—2ye+y-a(x) —2ye+y-a(x)
2
() 2100
—2ye+y“a(x)
Taking fourth order finite difference approximation
yi = Yin7¥ia + O(h 4 ) in the above equation, we gt

2h[l+ 52J
6
Yiar — Via _
7 o PO ) Y(Xi +6) +a(%;)y(%;) + (%)
2h(1+J

2

—y”lz_hyi_l = [1+%J(p(xi )Y(Xi +8)+a0)y(x) +1(x))

After simple manipulation, we get three term recurrence rela-
tion given by

4p 4 Wi | i .
Fi :Tl(l_%j"'gqi ~ et e Eyiy-Fyi+Gyy=H,, fori=12 .. N-1 9)
where
G; :i_ Pi+1 1_1 _Qia
2h 6 h 6
H. — (rig +41i + i)
R e
6
The equation (6) gives tridiagonal system of (N-1) equations with
(N+1) unknowns yqy to ypy . The two given boundary condi-
tions (2) together with these  (N-1) equations are then sufficient
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)

Y
h
i 7p|+1
6

F, 4p| 1_1 g — ypl—l
6 h
G -t _Pia _M__
' 2h 6
H. — (rig +41; +ri+1)
' 6

The equation (9) gives tridiagonal system and we can solve
this system together with the given boundary conditions using
discrete invariant imbedding algorithm.

3 NUMERICAL EXAMPLES

To demonstrate the applicability of the method we have ap-
plied it on three linear and two nonlinear singular perturba-
tion problems with left-end boundary layer, two with right-
end boundary layer problem. These examples have been cho-
sen because they have been widely discussed in literature and
because exact solutions are available for comparison.

Example 1: Consider the following homogeneous singular

perturbation problem

" ()+y' () -y(x)=0; xe[01]

with y(0)=1 and y(1)=1
The exact solution is given by

[(e™ —De™ +(1-e™)e™]
[e™ —e™]
where m;=(-1++/1+4¢)/(2g) and my=(-1—-+1+4g)/(2¢)

The numerical results are given in table 1 for £ =103, 1 =102

y(x) =

Example 2: Now consider the following non-homogeneous
singular perturbation problem

&"(X)+y'(x) =1+ 2x;
with y(0)=0 and y(1)=1
The exact solution is given by

—xle
y(x) = X(x +1-25)+(2‘8(ﬂ1_1—/8r)
1—e™'¢

The numerical results are given in table 2 for £ =103, h =10

x € [0,1]

Example 3: Consider the following variable coefficient singu-
lar perturbation problem

ey"(x)+(1—§)y'(x)—§y(x) ~0;

with y(0)=0 and y(1)=1

We have chosen to use uniformly valid approximation (which
is obtained by the method given by Nayfeh [7] page 148;
equation 4.2.32] as our “exact’ solution:

y(x) = 5w

x € [0,1]

le—(x—x2/4)/a
2
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The numerical results are given in table 3 for £ =103, 1 =10
Example 4: Consider the following non linear singular pertur-
bation problem

() +2y() + " =
with y(0)=0 and y(1)=0
The linear problem concerned to this example is

00 +2y'(00 + 2 y(0) = [ﬁj{log[é) —1}

We have chosen to use Bender and Orszag’s uniformly valid
approximation [1], page 463; equation: 9.7.6] for comparison,

y(x) = log( i ] (log, 2)e 2/

For this example, we have boundary layer of thickness O(g) at
x=0. [cf. Bender and Orszag [1]].
The numerical results are given in table 4 for £ =103, h =10

0: xe[0,1]

Example 5: Consider the following nonlinear singular pertur-
bation problem from O’Malley [8], page 9; equation (1.10) case
2]
&"(0)-y(x¥)y'(x)=0; xe[11]
with y(-1)=0 and y(1)=-1.
The linear problem concerned to this example is
&' (X)+y'(x)=0
We have chosen to use O" Malley’s approximate solution [[8],
pages 9 and 10; equations 1.13 and 1.14] for comparison,
1 (xD)/e
y(x) =~ 14+ e (/e

For this example, we have a boundary layer of width O(e) at
x= -1 [cf. O" Malley [8], pages 9 and 10, egs. (1.10), (1.13),
(1.14), case 2] .

The numerical results are given in table 5 for £ =103, h =10

Example 6:
problem

Consider the following singular perturbation
' ()-y'(x)=0; xe[0]]

with y(0)=1 and y(1)=0
Clearly, this problem has a boundary layer at x=1 i.e., at the
right end of the underlying interval.
The exact solution is given by

(x-1/e

e -1

y(X) = —1/:‘.‘ 1

The numerical results are given in table 6 for £ =103, 1 =10

Example7: Now we consider the following singular perturba-
tion Problem

&y"(X) —y'() - +&)y(x) = 0; xe[0,1]
with y(0) =1+exp(-(1+¢)/ &); and y(1) =1+1/e.
Clearly this problem has a boundary layer at x=1.
The exact solution is given by

y(x)=e(1+L)(x-1)/ “tex

The numerical results are given in table 7 for £ =103, h =10
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4 DISCUSSIONS AND CONCLUSIONS

In this paper, we have developed a finite difference method to
solve singularly perturbed two-point boundary value problem
using deviating argument. We have replaced the given se-

TABLE 2
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NUMERICAL RESULTS OF EXAMPLE 2 WITH h = 1072 , E= 1072

cond order boundary value problem by an asymptotically X y with y with y with Exact solu-
equivalent first order differential equation with deviating ar- y=¢ y=1.2¢ y=13¢ tion
gument. We have applied a fourth order finite difference ap- 0 0 0 0 0
proximation for the first derivative and obtained a tridiagonal 001 | 0883171 | -0.926853 | -0.967217 20.987874
system. Then, we have solved this tridiagonal system efficient- : : : : :
ly by discrete invariant imbedding algorithm. This method is 0.02 | -0.958637 | -0.965971 | -0.969390 | -0.977639
iterative on deviating argument. We have presented numeri- | 0.03 | -0.956471 | -0.958178 | -0.959149 | -0.967159
cal results of several model linear and nonlinear examples for 0.04 | -0.946680 | -0.947725 | -0.948553 -0.956480
different value of deviating argument to support the proposed 0.05 | -0.935976 | -0.936944 | -0.937756 -0.945600
method. 0.1 | -0.879090 | -0.879999 | -0.880769 | -0.888200
0.3 | -0.601515 | -0.602222 -0.602820 -0.608600
TaBLE 1 0.5 | -0.243939 | -0.244444 | -0.244871 | -0.249000
NUMERICAL RESULTS OF ExaMPLE 1 with h =102, & =10~ 0.7 | 0.1936363 | 0.1933333 | 0.1930769 | 0.1906000
0.9 | 0.7112121 | 0.7111111 0.7110256 0.7102000
X y with y with y with Exact solu- 1 1 1 1 1
y=& y=12¢ y=13¢ tion
0 1 1 1 1 Max.error: 0.1047 0.0610 0.0207
0.01 | 0.462307 0.405503 0.380332 0.371972
0.02 | 0.390121 0.378952 0.377257 0.375678 TABLE 3
0.03 | 0.383246 0.381190 0.380955 0.379450
004 | 0385562 0.384922 0.384763 0.383259 NUMERICAL RESULTS OF EXAMPLE 3witH h =102, £ =107
0.05 | 0.389199 0.388765 0.388610 0.387107 - : -
X y with y with y with Exact
0.1 0.408984 0.408585 0.408431 0.406935 y=¢ y=12¢ y=1.3¢ solution
0.3 | 0.498877 0.498498 0.498352 0.496932 0 0 0 0 0
05 | 0608529 | 0.608199 | 0.608072 | 0.606833 8-8; g-ggzggé 8-‘5‘83;22 8-‘5‘32282 g-ggéggg
0.7 0.742281 0.742040 0.741947 0.741040 0.03 0.511543 0.511592 0.511376 0.507614
09 | 0905432 | 0905334 | 0.905296 | 0.904927 004 | 0514585 | 0514272 | 0.513973 | 0.510204
1 1 1 1 1 0.05 | 0.517254 0.516900 0.516595 | 0.512820
0.1 0.530782 0.530421 0.530114 0.526315
Max.error: 0.0903 0.0335 0.0084 0.3 0.592740 0.592377 0.592068 0.588235
0.5 0.670989 0.670641 0.670346 0.666666
0.7 0.772878 0.772586 0.772337 0.769230
0.9 0.910908 0.910764 0.910641 0.909090
1 1 1 1 1
Max.error: 0.0445 0.0230 0.0038
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TABLE 4
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NUMERICAL RESULT OF EXAMPLE 4 witH h =1072, ¢ =107° TABLE 6
X }/yz\%lfgg },yz\,\é)lfgg }/yzvgff?]g Exaggﬁolu- NUMERICAL RESULT OF EXAMPLE 6 WiTH h =107, £ =107
0 0 0 0 0
0.01 | 0.586235 0.648906 0.702389 0.683196 X y with y with y with Exact solution
0.02 | 0.663050 | 0.674985 | 0.676164 | 0.673344 y=11e | y=12¢ y=13¢
003 | 0665811 | 0.667107 | 0666704 | 0.663588 0 L L L 1.000000
004 | 0657880 | 0.657465 | 0656958 | 0.653926 0.10 | 1.000000 | 0.999999 | 0.999999 1.000000
0.05 | 0.648475 0.647816 0.647316 0.644357 0.30 | 1.000000 | 0.999999 0.999999 1.000000
0.10 | 0.601522 0.600899 0.600456 0.597837 0.50 | 1.000000 | 0.999999 0.999999 1.000000
030 | 0433024 | 0432646 | 0432377 | 0430782 0.70 | 1.000000 | 0.999999 | 0.999999 1.000000
0.50 | 0.288977 0.288759 0.288603 0.287682 0.90 | 0.999999 | 0.999999 0.999999 1.000000
0.70 | 0.163163 0.163055 0.162977 0.162518 0.95 | 0.999991 | 0.999999 0.999999 1.000000
0.90 | 0.051475 0.051444 0.051422 0.051293 0.96 | 0.999915 | 0.999992 0.999999 1.000000
1 5 5 5 5 0.97 | 0.999118 | 0.999854 0.999997 0.999999
0.98 | 0.990805 | 0.997229 0.999839 0.999999
Max.error: 0.0970 0.0343 0.0192 0.99 | 0.904109 0.947368 0.987341 0.999954
1 0 0 0 0
TABLE 5 Max. error: 0.0958 0.0526 0.0126
NUMERICAL RESULT OF EXAMPLE 5 witH h =1072, £ =107°
X y with y with y with Exact solu- TABLE 7
1 4 =01.15 /4 23'28 4 =;'38 tl(())n NUMERICAL RESULT OF EXAMPLE 7wiTH h =1072, ¢ =107°
-0.99 | -0.904109 | -0.947368 | -0.987341 | -0.999909
-0.98 | -0.990805 | -0.997229 | -0.999839 | -0.999999 X y with y with ywith  =1.3¢ | Exact solu-
-0.97 | -0.999118 | -0.999854 | -0.999997 | -0.999999 r=11 r=12¢ tion
-0.96 | -0.999915 | -0.999992 | -0.999999 | -1.000000 0 1 1 1 1
095 | 0999991 | 0999999 | -0999999 | -1.000000 0.10 | 0.905289 | 0.905245 0.905207 0.904837
070 | -1.000000 | -1.000000 | -1.000000 | -1.000000 0.30 | 0.741930 | 0.741820 0.741726 0.740818
050 | -1.000000 | -1.000000 | -1.000000 | -1.000000 0.50 | 0.608048 | 0.607898 0.607771 0.606530
030 | 1000000 | -1.000000 | -1.000000 | -1.000000 0.70 | 0.498326 | 0.498153 0.498007 0.496585
010 | 1000000 | 1000000 | -.000000 | -1.000000 0.90 | 0.408403 | 0.408221 0.408067 0.406569
030 | 1000000 | -1.000000 | -1.000000 | -1.000000 0.95 | 0.388589 | 0.388400 0.388245 0.386741
050 | 1000000 | -1.000000 | -1.000000 | -1.000000 0.96 | 0.384811 | 0.384559 0.384397 0.382892
070 | 1000000 | -1.000000 | -1.000000 | -1.000000 0.97 | 0.381744 | 0.380872 0.380589 0.379083
0.90 | 1000000 | 1000000 | -.000000 | -1.000000 0.98 | 0.385897 | 0.379530 0.376936 0.375311
1 1000000 | 1000000 | -.000000 | -1.000000 0.99 | 0.466836 | 0.423779 0.383986 0.371621
1 | 1.367879 | 1.367879 1.367879 1.367879
Max.error: 0.0958 0.0525 0.0126
Max.error: 0.0952 0.0522 0.0124
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