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A  Finite Difference Technique for Singularly 
Perturbed Two-Point Boundary value Problem 

using Deviating Argument 
K. Phaneendra1, K. Madhulatha2, Y.N. Reddy3 

 

Abstract— In this paper, we have presented a finite difference technique to solve singularly perturbed two-point boundary value problem 
using deviating argument.  We have replaced the given second order boundary value problem by an asymptotically equivalent first order 
differential equation with deviating argument.  We have applied a fourth order finite difference approximation for the first derivative and 
obtained a tridiagonal system. Then, we have solved this tridiagonal system efficiently by discrete invariant imbedding algorithm.  This 
method is iterative on the deviating argument.   We have presented numerical results of several model examples to support the proposed 
method. 

Index Terms —  Singularly perturbed two-point boundary value problem, Boundary layer, Deviating argument, Finite difference, Taylor 
series, Tridiagonal system.   

——————————      —————————— 

1 INTRODUCTION                                                                     
Singularly perturbed boundary value problems arise frequent-
ly in many areas of science and engineering such as heat trans-
fer problem with large Peclet numbers, Navier–Stokes flows 
with large Reynolds numbers, chemical reactor theory, aero-
dynamics, reaction– diffusion process, quantum mechanics, 
optimal control etc. due to the variation in the width of the 
layer with respect to the small perturbation parameter ε. Sev-
eral difficulties are experienced in solving the singular pertur-
bation problems using standard numerical methods with uni-
form mesh. Equations of this type typically exhibit solutions 
with layers; that is, the domain of the differential equation 
contains narrow regions where the solution derivatives are 
extremely large.  

These types of problems are discussed asymptotically by 
Bellman [1], Bender and Orszag [2], Kevorkian and Cole [5], 
Nayfeh [7], O’Malley [8] and numerically by Van Veldhuizen 
[10], Miller [6], Kadalbajoo and Reddy [4], Soujanya et. al. [9].  
It is well-known that replacing the first derivative by central 
difference is not suitable, i.e., no resemblance at all exists be-
tween the solution of the differential equation and the solution 
of the difference equation. This difficulty can be removed by 
approximating the first derivative by fourth order difference.   

Hence, in this paper, we have presented a finite difference 
technique to solve singularly perturbed two-point boundary 
value problem using deviating argument.  We have replaced 
the given second order boundary value problem by an asymp-
totically equivalent first order differential equation with devi-
ating argument.  We have applied a fourth order finite differ-
ence approximation for the first derivative and obtained a 
tridiagonal system. Then, we have solved this tridiagonal sys-

tem efficiently by discrete invariant imbedding algorithm.  
This method is iterative on the deviating argument.   We have 
presented numerical results of several model examples to 
support the proposed method. 

 

2 DESCRIPTION OF THE METHOD 

2.1 Left – end Boundary Layer 
Consider a linear singularly perturbed two-point boundary 
value problem of the form: 

)()()()()()( xfxyxbxyxaxy =+′+′′ε ,   x ∈ [0, 1]         (1) 
with boundary conditions   y (0) = α and y (1) = β               (2) 
where ε  is a small positive parameter (0 < ε  << 1) and α, β 
are known constants. 
We assume that a(x), b(x) and f(x) are sufficiently continuously 
differentiable functions in [0, 1].  Furthermore, we assume that 
b(x) ≤ 0, a(x) ≥ M > 0 throughout the interval [0, 1], where M is 
some positive constant.  Under these assumptions,  (1) – (2) 
has a unique solution y(x) which in general, displays a bound-
ary layer of width O( ε ) at x = 0 for small values of ε . 
First, we replace the original second order differential equa-
tion (1) by an asymptotically equivalent first order differential 
equation with a small deviating argument, and then solving it 
efficiently by employing finite differences. 
Let γ  be a small positive deviating argument 10 <<< γ .  By 
using Taylor series expansion in the neighbourhood of the 
point x, we have              
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and consequently, equation (1) is replaced by the following first 
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order differential equation with a small deviating argument: 
 

)()()()()()( xrxyxqxyxpxy ++−=′ γ , for 1≤≤ xγ               (4) 
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The transition from equation (1) to equation (4) is admitted, 
because of the condition that γ  is small.  This replacement is 
significant from the computational point of view.  Further de-
tails on the validity of this transition can be found in El’sgol’ts 
and Norkin [3]. 
We now describe a new finite difference method to solve 
equation (4).    We divide the interval [0, 1] into N equal subin-
tervals of mesh size h=1/N so that == iihxi   , 0, 1, 2,…, N.  
The equation (4) at ixx =  for i = 1, 2, …., N-1 becomes  

 
)()()()()()( iiiiii xrxyxqxyxpxy ++−=′ γ                 (5) 

Taking fourth order finite difference approximation  
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in the above equation, where  11
2 2 +− +−= iiii yyyyδ ,  
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After simple manipulation, we get three term recurrence rela-
tion  

iiiiiii HyGyFyE =+− +− 11 , for i = 1, 2, … , N-1              (6) 
where 
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The equation (6) gives tridiagonal system of (N-1) equations with 
(N+1) unknowns 0y  to Ny .  The two given boundary condi-
tions (2) together with these     (N-1) equations are then sufficient 

to solve for the unknowns iy ’s by using an efficient algorithm 
called discrete invariant imbedding. 
 
 

2.2 Right –End Boundary Layer 
Now assume that b(x) ≤ 0, a(x) ≤ M < 0 throughout the interval 
[0, 1], where M is some negative constant.  Under these as-
sumptions, (1) - (2) has a unique solution y(x) which in gen-
eral, displays a boundary layer of width O(ε) at x = 1 for small 
values of ε. 
Let γ  be a small positive deviating argument, 10 <<< γ .  By 
using Taylor series expansion in the neighbourhood of the 
point x, we have 
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and consequently, equation (1) is replaced by the following 
first order differential equation with a small deviation argu-
ment: 

)()()()()()( xrxyxqxyxpxy +++=′ γ , for γ−≤≤ 10 x       (8) 
where 
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Taking fourth order finite difference approximation 
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After simple manipulation, we get three term recurrence rela-
tion given by 

iiiiiii HyGyFyE =+− +− 11 ,  for i = 1, 2, … , N-1              (9) 
where 
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The equation (9) gives tridiagonal system and we can solve 
this system together with the given boundary conditions using 
discrete invariant imbedding algorithm. 

 

3 NUMERICAL EXAMPLES 
To demonstrate the applicability of the method we have ap-
plied it on three linear and two nonlinear singular perturba-
tion problems with left-end boundary layer, two with right–
end boundary layer problem.  These examples have been cho-
sen because they have been widely discussed in literature and 
because exact solutions are available for comparison.  
Example 1:  Consider the following homogeneous singular 

perturbation problem   

0)()()( =−′+′′ xyxyxyε ;    x ∈ [0,1] 
with   y(0)=1 and y(1)=1. 
The exact solution is given by 

][
])1()1[()(

12

2112

mm

xmmxmm

ee
eeeexy

−

−+−
=  

where  m1= )2/()411( εε++−  and m2= )2/()411( εε+−−  
The numerical results are given in table 1 for ε =10-3, h =10-2. 

 
Example 2:  Now consider the following non-homogeneous 
singular perturbation problem  

xxyxy 21)()( +=′+′′ε ;    x ∈ [0,1] 
with   y(0)=0 and y(1)=1. 
The exact solution is given by  
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The numerical results are given in table 2 for ε =10-3, h =10-2. 
  
Example 3: Consider the following variable coefficient singu-
lar perturbation problem  

0)(
2
1)()

2
1()( =−′−+′′ xyxyxxyε ;    x ∈ [0,1] 

with  y(0)=0 and y(1)=1. 
We have chosen to use uniformly valid approximation (which 
is obtained by the method  given by Nayfeh [7] page 148; 
equation 4.2.32] as our ‘exact’ solution:    
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The numerical results are given in table 3 for ε =10-3, h =10-2.   
Example 4: Consider the following non linear singular pertur-
bation problem    

0)(2)( )( =+′+′′ xyexyxyε ;   x ∈ [0,1] 
with  y(0)=0 and y(1)=0. 
The linear problem concerned to this example is 
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We have chosen to use Bender and Orszag’s uniformly valid 
approximation [1], page 463; equation: 9.7.6] for comparison,   
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For this example, we have boundary layer of thickness O(ε) at 
x=0. [cf. Bender and Orszag [1]]. 
The numerical results are given in table 4 for ε =10-3, h =10-2.  
  
Example 5:  Consider the following nonlinear singular pertur-
bation problem from O’Malley [8], page 9; equation (1.10) case 
2]:  

0)()()( =′−′′ xyxyxyε ;   x ∈ [-1,1] 
with   y(-1)=0 and y(1)= -1. 
The linear problem concerned to this example is 

0)()( =′+′′ xyxyε  
We have chosen to use O’ Malley’s approximate solution [[8], 
pages 9 and 10;  equations 1.13 and 1.14] for comparison, 
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For this example, we have a boundary layer of width O(ε) at 
x= -1 [cf. O’ Malley [8], pages 9 and 10, eqs. (1.10), (1.13), 
(1.14), case 2 ] . 
The numerical results are given in table 5 for ε =10-3, h =10-2.   

 
Example 6:  Consider the following singular perturbation 
problem   

0)()( =′−′′ xyxyε ;   x ∈ [0,1] 
with  y(0)=1 and y(1)=0. 
Clearly, this problem has a boundary layer at x=1 i.e.,  at the 
right end of the underlying interval.      
The exact solution is given by  
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The numerical results are given in table 6 for ε =10-3, h =10-2. 
 

Example7: Now we consider the following singular perturba-
tion Problem 

0)()1()()( =+−′−′′ xyxyxy εε ; x∈[0,1] 
with  y(0) =1+exp(-(1+ε)/ε);  and y(1) =1+1/e. 
Clearly this problem has a boundary layer at x=1.  
 The exact solution is given by 

y(x)=e(1+ε)(x-1)/ ε+e-x 
The numerical results are given in table 7 for ε =10-3, h =10-2.  
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4 DISCUSSIONS AND CONCLUSIONS 
In this paper, we have developed a finite difference method to 
solve singularly perturbed two-point boundary value problem 
using deviating argument.  We have replaced the given se-
cond order boundary value problem by an asymptotically 
equivalent first order differential equation with deviating ar-
gument.  We have applied a fourth order finite difference ap-
proximation for the first derivative and obtained a tridiagonal 
system. Then, we have solved this tridiagonal system efficient-
ly by discrete invariant imbedding algorithm.  This method is 
iterative on deviating argument.  We have presented numeri-
cal results of several model linear and nonlinear examples for 
different value of deviating argument to support the proposed 
method. 

 

TABLE 1 

NUMERICAL RESULTS OF EXAMPLE 1  WITH 32 10  ,10 −− == εh  
 

 
Max.error: 0.0903          0.0335                  0.0084 
 

 

 

 
 
 
 
 
 
 

 
 

 

 

TABLE 2   

NUMERICAL RESULTS OF EXAMPLE 2 WITH 32 10  ,10 −− == εh  

 
Max.error:   0.1047            0.0610                0.0207 

 

TABLE 3 

  NUMERICAL RESULTS OF EXAMPLE 3 WITH 32 10  ,10 −− == εh  

 
Max.error:   0.0445              0.0230                0.0038 

 

 

 
 
 
 
 

 
 

 

X y with 
εγ =  

y with 
εγ 2.1=  

y with 
εγ 3.1=  

Exact solu-
tion 

0 1 1 1 1 
0.01 0.462307 0.405503 0.380332 0.371972 
0.02 0.390121 0.378952 0.377257 0.375678 
0.03 0.383246 0.381190 0.380955 0.379450 
0.04 0.385562 0.384922 0.384763 0.383259 
0.05 0.389199 0.388765 0.388610 0.387107 
0.1 0.408984 0.408585 0.408431 0.406935 
0.3 0.498877 0.498498 0.498352 0.496932 
0.5 0.608529 0.608199 0.608072 0.606833 
0.7 0.742281 0.742040 0.741947 0.741040 
0.9 0.905432 0.905334 0.905296 0.904927 
1 1 1 1 1 

x y with 
εγ =  

y with 
εγ 2.1=  

y with 
εγ 3.1=  

Exact solu-
tion 

0 0 0 0 0 
0.01 -0.883171 -0.926853 -0.967217 -0.987874 
0.02 -0.958637 -0.965971 -0.969390 -0.977639 
0.03 -0.956471 -0.958178 -0.959149 -0.967159 
0.04 -0.946680 -0.947725 -0.948553 -0.956480 
0.05 -0.935976 -0.936944 -0.937756 -0.945600 
0.1 -0.879090 -0.879999 -0.880769 -0.888200 
0.3 -0.601515 -0.602222 -0.602820 -0.608600 
0.5 -0.243939 -0.244444 -0.244871 -0.249000 
0.7 0.1936363 0.1933333 0.1930769 0.1906000 
0.9 0.7112121 0.7111111 0.7110256 0.7102000 
1 1 1 1 1 

x y with 
εγ =  

y with 
εγ 2.1=  

y with 
εγ 3.1=  

Exact 
solution 

0 0 0 0 0 
0.01 0.457981 0.479457 0.499300 0.502489 
0.02 0.504599 0.507586 0.508695 0.505050 
0.03 0.511543 0.511592 0.511376 0.507614 
0.04 0.514585 0.514272 0.513973 0.510204 
0.05 0.517254 0.516900 0.516595 0.512820 
0.1 0.530782 0.530421 0.530114 0.526315 
0.3 0.592740 0.592377 0.592068 0.588235 
0.5 0.670989 0.670641 0.670346 0.666666 
0.7 0.772878 0.772586 0.772337 0.769230 
0.9 0.910908 0.910764 0.910641 0.909090 
1 1 1 1 1 
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TABLE 4 

  NUMERICAL RESULT OF EXAMPLE 4 WITH 32 10  ,10 −− == εh  

X y with 
εγ 5.0=  

y with 
εγ 6.0=  

y with 
εγ 7.0=  

Exact solu-
tion 

0 0 0 0 0 
0.01 0.586235 0.648906 0.702389 0.683196 
0.02 0.663050 0.674985 0.676164 0.673344 
0.03 0.665811 0.667107 0.666704 0.663588 
0.04 0.657880 0.657465 0.656958 0.653926 
0.05 0.648475 0.647816 0.647316 0.644357 
0.10 0.601522 0.600899 0.600456 0.597837 
0.30 0.433024 0.432646 0.432377 0.430782 
0.50 0.288977 0.288759 0.288603 0.287682 
0.70 0.163163 0.163055 0.162977 0.162518 
0.90 0.051475 0.051444 0.051422 0.051293 

1 0 0 0 0 
 
Max.error: 0.0970             0.0343              0.0192 

 
 

TABLE 5 

  NUMERICAL RESULT OF EXAMPLE 5 WITH 32 10  ,10 −− == εh  

 
 
Max.error:   0.0958         0.0525               0.0126 

 
 
 
 
 
 
 
 

 

TABLE 6 

  NUMERICAL RESULT OF EXAMPLE 6 WITH 32 10  ,10 −− == εh  
 

 
 

  Max. error:   0.0958           0.0526               0.0126 
 
 

TABLE 7 

  NUMERICAL RESULT OF EXAMPLE 7 WITH 32 10  ,10 −− == εh  
 
 

 
 

      Max.error:  0.0952            0.0522                 0.0124 
 
 
 
 
 
 
 
 
 
 
 

X y with 
εγ 1.1=  

y with 
εγ 2.1=  

y with 
εγ 3.1=  

Exact solu-
tion 

-1 0 0 0 0 
-0.99 -0.904109 -0.947368 -0.987341 -0.999909 
-0.98 -0.990805 -0.997229 -0.999839 -0.999999 
-0.97 -0.999118 -0.999854 -0.999997 -0.999999 
-0.96 -0.999915 -0.999992 -0.999999 -1.000000 
-0.95 -0.999991 -0.999999 -0.999999 -1.000000 
-0.70 -1.000000 -1.000000 -1.000000 -1.000000 
-0.50 -1.000000 -1.000000 -1.000000 -1.000000 
-0.30 -1.000000 -1.000000 -1.000000 -1.000000 
0.10 -1.000000 -1.000000 -1.000000 -1.000000 
0.30 -1.000000 -1.000000 -1.000000 -1.000000 
0.50 -1.000000 -1.000000 -1.000000 -1.000000 
0.70 -1.000000 -1.000000 -1.000000 -1.000000 
0.90 -1.000000 -1.000000 -1.000000 -1.000000 

1 -1.000000 -1.000000 -1.000000 -1.000000 

x y with 
εγ 1.1=  

y with 
εγ 2.1=  

y with 
εγ 3.1=  

Exact solution 

0 1 1 1 1.000000 
0.10 1.000000 0.999999 0.999999 1.000000 
0.30 1.000000 0.999999 0.999999 1.000000 
0.50 1.000000 0.999999 0.999999 1.000000 
0.70 1.000000 0.999999 0.999999 1.000000 
0.90 0.999999 0.999999 0.999999 1.000000 
0.95 0.999991 0.999999 0.999999 1.000000 
0.96 0.999915 0.999992 0.999999 1.000000 
0.97 0.999118 0.999854 0.999997 0.999999 
0.98 0.990805 0.997229 0.999839 0.999999 
0.99 0.904109 0.947368 0.987341 0.999954 

1 0 0 0 0 

x y with 
εγ 1.1=  

y with 
εγ 2.1=  

y with εγ 3.1=  Exact solu-
tion 

0 1 1 1 1 
0.10 0.905289 0.905245 0.905207 0.904837 
0.30 0.741930 0.741820 0.741726 0.740818 
0.50 0.608048 0.607898 0.607771 0.606530 
0.70 0.498326 0.498153 0.498007 0.496585 
0.90 0.408403 0.408221 0.408067 0.406569 
0.95 0.388589 0.388400 0.388245 0.386741 
0.96 0.384811 0.384559 0.384397 0.382892 
0.97 0.381744 0.380872 0.380589 0.379083 
0.98 0.385897 0.379530 0.376936 0.375311 
0.99 0.466836 0.423779 0.383986 0.371621 

1 1.367879 1.367879 1.367879 1.367879 
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